
1

Introduction

The relationship between programs and formal languages provides an example of the impat

of theory on pratie. Uses of formal theory inlude the following:

• lexial and parsing stages of ompiler onstrution

• use of regular expressions in text editors

• state-harts in objet-oriented modeling

• iruit-design

• DNA and protein sequene mathing

On the other hand, theory ats also as an \early warning system" by providing a siene

of the impossible:

• what should not be attempted beause it is impossible (or provably too ostly)

A fundamental question in omputing is whether there exist tasks/problems that annot

be solved algorithmially and, if yes, whih tasks are algorithmially solvable and whih are

not. In fat, it an be established that the number of di�erent omputing problems is larger

than the number of all possible programs (in some programming language suh as Java or

C), whih means that there must exist problems that are not solvable by any program (or

algorithm).

Note that the number of programs is in�nite, and to show that the number of omputing

problems is larger, we need to ompare the sizes of di�erent in�nite numbers.

In this ourse we use a di�erent approah. Using a tehnique alled diagonalization we

establish that ertain spei� (and \useful") omputing problems annot be solved by any

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 2

program written in the language C. The most well-known one is the so alled halting problem

that asks whether an arbitrary program given as input terminates.

Example. A program with behavior as depited in Figure 1 does not exist!

TESTING
PROGRAM

Input program

YES, if the input program
always terminates

NO, if the input program
sometimes doesn’t terminate

TERMINATION

Figure 1: Example of an unomputable problem.

However, having an algorithm A for a omputing problem P does not mean that P is

solvable in pratie. It may be the ase that for inputs of moderate size A would need more

time than the age of the universe.

A oarse lassi�ation of problems/funtions:

1. Non-omputable (that is, impossible to solve using an algorithm/a omputer)

2. Possible{with{unlimited{resoures BUT impossible{with{limited{resoures

3. Possible{with{limited{resoures

Typial questions we want to answer:

• Program existene: Does there exist a program for a given problem (or funtion)?

• Software spei�ation: How should programs be spei�ed?

• Software validation: Is a given program orret?

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 3

• Software onstrution: How is a orret program obtained?

• Semantis: What does a given program do? (this is related to orretness)

• EÆieny: Is there a more eÆient (faster) program for the given problem?

• Hardware omparison: Is one mahine more powerful than another one?

Given a programming problem it is easier to onvine someone that there is a program

whih solves the problem (if one exists) than to onvine someone that there is no program

for the problem (if a program does not exist). In the former ase it is suÆient to give the

program and, in fat, usually it is suÆient to just outline the solution informally, or in

pseudo ode (if the purpose is just to onvine the reader that a program exists).

Example. A program to ompute the funtion f(n) = n2.

On the other hand, if we want to show that a program for the given problem does not

exist we need to show that none of the in�nitely many possible programs solves the given

problem (or omputes a given funtion).

In order to be able to deal with negative results of this kind, we need to be preise about

what onstitutes a legal program! (or a legal algorithm)

Using a more pratial perspetive, a problem may be \unomputable" also due to other

types of reasons, for example, prediting the weather for a month in advane is impossible

beause the required input would be \in�nite".

Instead of onsidering general algorithms1, we start here with a simpler problem:

• test whether arbitrary input strings (= sequenes of symbols) an be mathed by a

given pattern.

1The general limits of algorithmi omputability will be disussed in the last part of the ourse.

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 4

Speial notation and implementation tehniques have been developed to speify and

reognize suh patterns:

• state-transition diagrams (automata): simple simulated mahines

• regular expressions: rules for building patterns

• grammars: rules for generating patterns

Alphabets, strings and languages

This material is from Chapter 7 in the textbook.

• An alphabet is a �nite, nonempty set of elements. The elements of the alphabet are

alled symbols (or tokens, haraters).

• A string over an alphabet � is a �nite sequene of symbols of �. (Strings are sometimes

alled also words.)

• A language over � is a set of strings over �.

Examples.

1. English alphabet {a, b, c, d, . . . , z}

Strings: at, dog, mouse, xzrbstuph, . . .

Language: the set of all orret English sentenes

| not preisely de�ned . . .

2. Alphabet: {a, b}

Strings: ε, a, b, ab, ba, aa, bb, aaa, . . .

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 5

Language: {aibi | i ≥ 0}

= {ε, ab, aabb, aaabbb, . . .}

3. Alphabet: Java reserved words and identi�ers

Example string: a Java program

Language: the set of all Java programs

We use the following de�nitions:

• The empty string is denoted ε.

ε is a string over any alphabet.

• The length of a string is the number of ourrenes of symbols in it. The length of a

string s is denoted |s|.

Examples:

– The length of ε is 0, that is, |ε| = 0.

– The length of the string bccb is 4, that is, |bccb| = 4.

• The onatenation of strings x and y is denoted xy. It is the string obtained by

appending y to x.

Examples: If x = abc and y = de, then xy = abcde and yx = deabc.

Note that ε ats as an identity for string onatenation: xε = εx = x for all strings x,

in partiular, εε = ε.

Sine onatenation is assoiative we do not need to use parentheses:

for all strings x, y, z we have x(yz) = (xy)z. How would you prove this?

• If x is a string, xn denotes the onatenation of n opies of x (power of a string). Here

n ≥ 0.

Indutive de�nition:

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 6

1. x0 = ε

2. xi+1 = xxi, for i ≥ 0.

Example.

(abc)0 = ε

(abc)3 = abcabcabc

• If s = xy, we say that x is a pre�x of s and y is a suÆx of s. If s = xyz, we say that

y is a substring of s. Note that here x and/or z may be the empty string.

Examples:

1. ab is a pre�x of aba

2. ba is a suÆx of aba

3. ε is a pre�x/suÆx/substring of any string

4. a string is always a pre�x/suÆx/substring of itself

5. What are the substrings of cbc?

Formal languages

A formal language has to be preisely de�ned, the word formal refers to the fat that we

have a preise set of rules whih tell us exatly whih strings are in the language (respetively,

are not in the language).

• A �nite language an (at least in priniple) be de�ned by listing all strings in it.

Example: {00, 01, 10, 11}

• In�nite languages an be de�ned by giving some ondition that exatly haraterizes

the strings in the language.

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 7

Example.

{0n | n ≥ 0}

{0n1n | n ≥ 1}

Note that ∅ (the empty set) is a language over any alphabet �. Also {ε} (the language

having only the string ε) is a language over any alphabet �. It is important to remember

that ∅ 6= {ε}. Why?

We an de�ne new languages from \simpler" ones using operations on languages. Three

important operations are

• union

• onatenation

• losure

Later we will see that all regular languages an be built from elements of �, the empty

string ε and the empty set ∅ using these operations.

Union

If R and S are languages over �, their union is denoted R + S. It onsists of all strings

that are in R or in S. (Thus R + S is just a di�erent notation for the union of sets, R∪S.)

Conatenation

If R and S are languages, their onatenation is de�ned as

R · S = {rs | r ∈ R, s ∈ S},

usually written simply as RS.

Examples.

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 8

If R = {a, ab}, S = {bc, c}, what is their onatenation RS? Note: the onatenation

onsists of 3 di�erent strings.

If R1 = {a, ε} and S1 = {ab, b}, what is R1S1?

What are the following languages:

∅ ·R = ?

{ε} ·R = ?

{ε} · ∅ = ?

Closure of languages

The set of all strings over alphabet � is denoted �∗. This operation an be extended for

any language S:

S∗

= {s1 · . . . · sn | si ∈ S, i = 1, . . . , n, n ≥ 0}

= {ε}+ S + S2
+ S3

+ . . .

Example. Let S = {01, 1}. Then

S0 = {ε}

S1 = S = {01, 1}

S2 = {0101, 011, 101, 11}

S∗ = {ε, 1, 01, 11, 011, 101, 111, 0101, . . .}

We denote also

S+
= {s1 · . . . · sn | si ∈ S, i = 1, . . . , n, n ≥ 1}

= S + S2
+ S3

+ . . .

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 9

Note that S∗ = S+ + {ε} for any language S.

Definition. A language S over alphabet � is said to be regular if S an be de�ned from

elements of �, the empty string ε, and ∅ using the operations union, onatenation and

losure. The desription of the language S in this form is alled a regular expression for S.

In partiular, all �nite languages are regular. Why?

As we will see, the regular languages have \nie" properties and an be easily imple-

mented. However, regular languages form only a \small" family of languages and we will

develop tehniques for showing that a language is not regular.

Application: Sequene mathing problem

Eah DNA moleule is omposed of two strands that are made up of a sequene of

nuleotides. Eah nuleotide has one of four bases, represented by symbols A, T, C, G (and

other parts). Proteins are large moleules that are omposed of a sequene of amino aids.

There are 20 amino aids that our in proteins, denoted by standard one-letter symbols.

In this way, DNA or protein moleules an be represented as strings. Analyzing DNA or

protein sequenes an help to determine whih funtion they perform, or what parts of the

sequene are important for a partiular funtion. Comparing di�erent DNA sequenes tells

us whih organisms are related.

Related sequenes are not neessarily idential. When omparing DNA or protein se-

quenes we want to align them in a way that minimizes some type of distane between the

sequenes.

Regular expressions are used to speify patterns that desribe a related set of strings

(sequenes). In this way we an ompare the pattern to an individual sequene or to a

database of sequenes to �nd good mathes. The appliations often use extended regular

expressions that allow operations other than union, onatenation and losure. (Examples

in lass.)

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 10

The tools used to solve sequene mathing problems typially involve also finite state

machines that are disussed in out next topi. The BLAST family of searh engines use

heuristi tehniques to build a large deterministic finite automaton that, for a given query

string, �nds from a database of known sequenes the most losely related ones.

